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ABSTRACT 
 

In recent years, the importance of economical considerations in the field of dam engineering 
has motivated many researchers to propose new methods for minimizing the cost of dames 
and in particular arch dams. This paper presents a method for shape optimization of double 
curvature arch dams corresponding to minimum construction cost while satisfying different 
constraints such as natural frequencies, stability and geometrical limitations. For optimization, 
the charged system search (CSS) and particle swarm optimization (PSO) are employed. To 
validate the finite element model, a real arch dam is considered as a test example. The results 
of the present method are compared to those of other optimization algorithms for the selected 
example from literature. 
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1. INTRODUCTION 
 

In recent decades, the researchers have focused on optimization of concrete arch dams 
because of the high construction cost and damage caused by these structures. The main 
objective of this research is to find a shape of arch dams that has minimum volume or cost 
while satisfying the corresponding constrains. One of the most important constrains is the 
behavior constraint. On other hand, natural frequencies are fundamental parameters which 
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affect dynamic behavior of the arch dams. Therefore, some limitations should be imposed on 
the natural frequency range to reduce the domain of vibration and also prevent the resonance 
phenomenon in dynamic response of arch dams. Traditionally, an arch dam is iteratively 
analyzed and designed to achieve this goal [1]. 

Recently some progress has been made in optimum design of arch dams considering different 
constraints. Almost all of these have used conventional methods for analysis approximation and 
optimization. These methods usually employ derivative calculations and may be trapped in local 
optima. The shape optimization of arch dams has been developed after appearing and development 
of finite element method in late 1950’s. Early research works dealt mainly with membrane-type 
solutions [2]. Later, Rajan [3], Mohr [4] and Sharma [5] developed solutions based on membrane 
shell theory. Sharpe [6] was the first to formulate the optimization as a mathematical programming 
problem. A similar method was also adopted by Rickeetts and Zienkiewicz [7] who used finite 
element method for stress analysis and Sequential Linear Programming (SLP) for the shape 
optimization of arch dams under static loading.  

An optimization problem may be solved by a global search optimization method including 
both probabilistic and deterministic concepts without any dependency on the gradients or 
derivatives of functions in searching for the optimal global solution. Unfortunately the 
gradient/derivative-based optimization methods have a tendency to be trapped in local minima 
for problems with a complex search domain. The charged system search (CSS) is one of the 
newly developed meta-heuristic algorithms which has been utilized for optimum design of 
different types of structures, Kaveh and Talatahari [8]. The governing laws from the physics 
initiate the base of the CSS algorithm. Particle swarm optimization (PSO) is another meta-
heuristic algorithm widely utilized for optimization problems due to its simple principle and 
ease of implementation, Eberhart and Kennedy [9]. 

In this study, the CSS and PSO algorithms are employed for cost optimization of arch 
dams. The arch dam cost consisting of the concrete volume and the casting areas is considered 
as the objective function. The design variables are geometric parameters of the arch dam. To 
implement a practical design optimization, many constraints such as stress, displacement, 
stability requirement, and frequency constraints should be considered. In the present study, for 
simplicity of the optimization operation and comparison with the existing results from 
literature, only frequency and some geometrical constraints are considered. The Opensees [10] 
and Matlab [11] are used for modeling, modal analysis and calculation the cost of the arch 
dam, respectively. 

The results of the solved examples demonstrate that CSS leads to better results than PSO. Also 
the results of these algorithms are better than those of the previously developed algorithms. 

 
 

2. CHARGED SYSTEM SEARCH ALGORITHM 
 

2.1. The standard Charged Search System 

The Charged System Search is a population-based search approach, where each agent (CP) is 
considered as a charged sphere with radius a, having a uniform volume charge density which 
can produce an electric force on the other CPs. The force magnitude for a CP located inside 
the sphere is proportional to the separation distance between the CPs, while for a CP located 
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outside the sphere it is inversely proportional to the square of the separation distance between 
the particles. The resultant forces or acceleration and the motion laws determine the new 
location of the CPs. The pseudo-code for the CSS algorithm can be summarized as follows: 

Step 1: Initialization. The initial positions of CPs are determined randomly in the search 
space and the initial velocities of charged particles are assumed to be zero. The values of the 
fitness function for the CPs are determined and the CPs are sorted in an increasing order. A 
number of the first CPs and their related values of the fitness function are saved in a memory, 
so called charged memory (CM). 

Step 2: Determination of the forces on CPs. The force vector is calculated for each CP as  
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where Fj is the resultant force acting on the jth CP; N is the number of CPs. The magnitude of 
charge for each CP (qi) is defined considering the quality of its solution as 
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Where  fitbest  and  fitworst are the best and the worst fitness of all particles, respectively; 
fit(i) represents the fitness of the agent i; and N is the total number of CPs. The separation 
distance r i,j between two charged particles is defined as follows: 
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where Xi and Xj are respectively the positions of the ith and jth CPs, Xbest is the position of the 
best current CP, and ε  is a small positive number. Here, pi,j is the probability of moving each 
CP towards the others and is obtained using the following function: 
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In Eq. (1), ar i,j indicates the kind of force and is defined as 
 

 

 >

=
else0

8.0rand1
ar j,i

 
(5) 

where rand represents a random number. 
Step 3: Solution construction. Each CP moves to the new position and the new velocity is 
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calculated as 
 old,jold,jv2,jja1,jnews,j XV.K.randF.K.randX ++=  (6) 
 
 old,jnew,jnew,j XXV −=  (7) 

 
where Ka is the acceleration coefficient; Kv is the velocity coefficient to control the influence of 
the previous velocity; and randj,1 and randj,2 are two random numbers uniformly distributed in 
the range (0,1). In this paper Ka and Kv are taken as: 
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Where iter is the iteration number, and itermax is the maximum number of iterations. 

 
Step 4: Updating process. If a new CP exits from the allowable search space, a harmony 

search-based handling approach [9] is used to correct its position. In addition, if some new CP 
vectors are better than the worst ones in the CM, these are replaced by the worst ones in the CM. 

Step 5: Termination criterion control. Steps 2-4 are repeated until a termination criterion 
is satisfied [8]. 

 
 

3. PARTICLE SWARM OPTIMIZATION 
 

The PSO is based on a metaphor of social interaction such as bird flocking and fish schooling, 
and is developed by Eberhart and Kennedy [9]. The PSO simulates a commonly observed 
social behavior, where members (particles) of a group (swarm) tend to follow the lead of the 
best of the group. In other words, the particles fly through the search space and their positions 
are updated based on the best positions of individual particles denoted by k

ip  and the best 

position among all particles in the search space represented by k
gp . 

The procedure of the PSO is reviewed below: 
Step 1: Initialization. An array of particles and their associated velocities are initialized 

with random positions. 
Step 2: Local and global best creation. The initial particles are considered as the first local 

best and the best of them corresponding to the minimum objective function will be the first 
global best. 

Step 3: Solution construction. The velocity and location of each particle are changed to the 
new position using the following equations: 
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Where k
iX  and k

iV  are the position and velocity for the ith particle at iteration k;  ω  is an inertia 
weight to control the influence of the previous velocity; r1, and r2 are two random numbers 
uniformly distributed in the range of (0, 1); c1 and c2 are two acceleration constants; k

ip  is the best 

position of the ith particle up to iteration k; 
k
gp  is the best position among all particles in the swarm 

up to iteration k and the sign “o ” denotes element-by-element multiplication. 
 
Step 4: Local best updating. The objective function of the particles is evaluated and k

ip  is 
updated according to the best current value of the fitness function. 

Step 5: Global best updating. The current global minimum objective function value among 
the current positions is determined and thus k

gp  is updated if the new position is better than 
the previous one. 

Step 6: Terminating criterion control. Step 3 to Step 5 are repeated until a terminating 
criterion is satisfied [9].  

 
 

4. GEOMETRICAL MODEL OF ARCH DAM 
 

4.1. Shape of the central vertical section 

The shape of an arch dam has two basic characteristics, namely the curvature and thickness. 
Both the curvature and the thickness change both in horizontal and vertical directions. For the 
central vertical section of double-curvature arch dam, as shown in Figure 1, one polynomial of 
nth order is used to determine the curve of upstream boundary and another polynomial is 
employed to determine the thickness. In this study, a parabolic function is considered for the 
curve of upstream face as [12]: 

 
h2

szsz)z(b)z(y
2

β
+−==  (11) 

where h and s are the height of the dam and the slope at crest respectively, and the point 
where the slope of the upstream face equals to zero is z=β h in which β is constant. 

 

 
Figure 1. Central vertical section of an arch dam 

A quadratic function for the thickness of central vertical section is also chosen as: 
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in which tc1, tc2 and tc3 are the thicknesses of the central vertical section at z=0, z=λ h and z=h, 
respectively and λ is a factor in the range of (0,1) and in this study is considered as λ=0.55. 

 
4.2. Shape of the horizontal section 

As shown in Figure 2, for the purpose of symmetrical canyon and arch thickening from crown 
to abutment, the shape of the horizontal section of a parabolic arch dam is determined by the 
following two parabolas:  

 

 
Figure 2. The shape of the horizontal section of a parabolic dam 

 
At the upstream face of the dam: 

 )z(bx
)z(r2

1)z,x(y 2

u
u +=  (14) 

At the downstream face of the dam: 
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where ru and rd are radii of curvatures correspond to upstream and downstream curves 
respectively, and functions of nth order with respect to z can be used for those radii. In this 
study, n=2 is assumed, and ru and rd are considered as quadratic functions: 
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where ru1, ru2, ru3 and rd1, rd2, rd3 are values of ru and rd at z=0, z= λh and z=h, respectively. 
 



OPTIMAL DESIGN OF ARCH DAMS FOR FREQUENCY LIMITATIONS USING... 
 

 

549 

 
5. VERIFICATION OF THE FINITE ELEMENT MODEL 

 
In order to validate the finite element model with the employed assumptions, an idealized 
model of Morrow Point arch dam which is located 263 km southwest of Denver, Colorado, is 
investigated, Figure 3. The properties of the dam in details can be found in Ref. [13]. The 
physical and mechanical properties involved here are the concrete density (2483N.s2/m4), the 
concrete poison’s ratio (0.2) and the concrete elasticity (27580×104 MPa). It is assumed that 
the reservoir is empty and dam foundation is rigid.  

 

 
Figure 3. Finite element model of the Morrow Point arch dam 

 
In literature, the natural frequencies of some mode are eliminated due to considering only 

half of the dam. Thus, in order to perform an exact analysis, it is necessary to consider the 
complete dam. In the present work complete model is considered and the first three natural 
frequencies of the mode of Morrow Point dam are determined from the frequency response 
function for the crest displacement and the results are compared to those reported in the 
literature [13-14]. The natural frequencies from the other literatures and present work are 
given in Table 1. It can be observed that a good conformity is achieved between the results of 
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present work with those of the previously reported results. 
 

Table 1. Natural frequencies (Hz) of the Morrow Point arch dam 

mode Tan and 
Chopra [13] 

Salajegheh et 
al. [14] Present work 

1 4.27 4.29 4.28 

2 - - 4.59 

3 - 6.71 6.78 
 
 

6. ARCH DAM OPTIMIZATION 
 

6.1. Mathematical model and optimization variables 

The optimization problem can formally be stated as follows: 
 

 

Find               X = [x1,x2,x3,..,xn] 
to minimizes Mer(X) = f(X) × fpenalty(X) 
subjected to    gi(X)≤0, i=1,2,…,m 
                        ximin ≤ xi ≤ ximax 

 (17) 

 
where X is the vector of design variables with n unknowns, gi is ith constraint from m 
inequality constraints and Mer(X) is the merit function; f(X) is the cost ; fpenalty(X) is the 
penalty function which results from the violations of the constraints corresponding to the 
response of the arch dam. Also, ximin and ximax are the lower and upper bounds of design 
variable vector. 

Exterior penalty function method is employed to transform the constrained dam 
optimization problem into an unconstrained one as follows: 
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where γp is penalty multiplier. 
 

6.2. Design variables 

The most effective parameters for creating the arch dam geometry were mentioned in Section 
2. The parameters can be adopted as design variables: 
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where the vector of design variables contains 11 shape parameters of arch dam. 
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6.3. Design constraints 

Design constraints are divided into some groups including the behavioral, geometrical and 
stability constraints. The behavioral constraints are the restricted natural frequencies that are 
defined as follows: 
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where frn , frln  and frun are the nth natural frequency, lower bound and upper bound of the 
nth natural frequency, respectively. Also, nfr is the number of natural frequencies. The most 
important geometrical constrains are those that prevent from intersection of upstream face and 
downstream face as: 
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where rdn and run are the radii of curvatures at the down and upstream faces of the dam in nth 
position in z direction. The geometrical constrain that is applied to facilities the construction, is 
defined as: 

 01
s
sss
all

all ≤−⇒≤  (22) 

 
where s is the slope of overhang at the downstream and upstream faces of dam and sall is its 
allowable value. Usually sall is taken as 0.3. The constraints ensuring the sliding stability of the 
dam may be expressed as: 
 ul φφφ ≤≤  (23) 
 
where φ is the central angle of arch dam and usually 11090 ≤≤ φ  , Ref. [15] 

 
6.4. Cost  function 

The cost function is the construction cost of the dam, which may be expressed as: 
 

 )X(ap)X(vp)X(f av +=  (24) 
 
where v(X) and a(X) are the concrete volume and the casting area of dam body. The unit price 
of concrete and casting are chosen as pv=$33.34 and pa=$6.67, respectively. 

The volume of concrete can be determined by integrating from dam surfaces as: 
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in which Area is an area produced by projecting of dam on xz plane. The areas of casting can 
be approximately calculated by summing of the areas of upstream and downstream faces as 
follows: 
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where au and ad  are the casting areas of upstream and downstream faces, respectively [16]. 

To evaluate v(X) and a(X) a computer program is coded using MATLAB [10]. 
 
 

7. NUMERICAL EXAMPLES 
 

In order to assess the effectiveness of proposed procedure and compare with other literature 
results, a well-known benchmark problem in the field of shape optimization of the arch dam 
with frequency constraints with a height of 180 m is considered. The width of the valley in its 
bottom and top are 40 m and 220 m, respectively. A finite element model based on modal 
analysis for the double-curvature arch dam is presented. The arch dam is treated as a three 
dimensional linear structure. To mesh of the arch dam body twenty-node isoperimetric solid 
element is used. It is assumed that the reservoir is empty and dam foundation is rigid to avoid 
the extra complexities that would otherwise arise. To evaluate the eigenvalues of arch dam a 
computer program is coded using Opensees [9]. 

The lower and upper bounds of design variables using empirical design methods are 
considered as: 

 50r1050r1040t12
120r40120r4030t810
180r50180r5012t43.0s0

1d1u1c

1d1u1c

1d1u1c

≤≤≤≤≤≤
≤≤≤≤≤≤≤≤
≤≤≤≤≤≤≤≤

β

 

(27) 

 
In current study, natural frequency constraints are imposed as: 
 

 Hz8frHz7frHz6frHz3fr 5431 ≤≤≤≤  (28) 
 
Table 2 shows the material properties for this example. Specifications of the CSS and PSO 

methods are given in Tables 3 to 4. This problem has been investigated by Gholizadeh  and 
Seyedpoor [12] using the GA and VSP algorithm. 

 



OPTIMAL DESIGN OF ARCH DAMS FOR FREQUENCY LIMITATIONS USING... 
 

 

553 

Table 2. Material properties of arch dam 

Property/unit Value 
E (Modulus of elasticity)/ MPa 21000 

poison’s ratio 0.2 
ρ (Material density)/ kg/m3 2400 

 
Table 3. Specifications of the CSS method 

Parameter Specification 
Number of CPs 50.00 

Max acceleration coefficient 1.00 
Max velocity coefficient 0.50 

Min acceleration coefficient 0.50 
Min velocity coefficient 0.00 

Magnitude of a 1.00 
Maximum iterations 100.00 

 
Table 4. Specifications of the PSO method 

Parameter Specification 
Swarm size 50.00 

Cognitive parameter 2.00 
Social parameter 2.00 

Inertia weight 0.50 
Maximum iterations 50.00 

 
7.1. Results of optimization 

Table 5 represents the design vectors and the cost of the corresponding half the arch dam 
obtained by different researchers and methods. It can be seen that both CSS and PSO have 
outperformed their rivals. Also, demonstrate that CSS gives better results than PSO. 
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Figure 4. The convergence curves for the CSS and  PSO  
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Figure 4 shows the convergence curves for both CSS and PSO for the optimum design of 
arch dam. 

 
Table 5. Optimum designs of the arch dam obtained by the various methods 

Gholizadeh  &  Seyedpoor [12] Present work 
Variable No. 

GA VSP PSO CSS 
1 0.2254 0.2508 0.2577 0.0216 
2 0.9752 0.7376 0.8195 0.6141 
3 4.4306 4.0027 8.7656 8.0144 
4 23.2672 18.0125 8.9711 8.0010 
5 13.6326 12.0258 17.6736 17.2981 
6 129.3949 149.9189 117.6666 159.6764 
7 92.0741 94.6904 79.1041 91.8348 
8 39.4704 49.2262 42.8860 46.7626 
9 129.0289 148.2564 63.7034 85.2251 
10 40.8120 53.0239 54.0178 52.3796 
11 31.0890 48.2745 26.3438 29.8441 

cost of the corresponding 
half the arch dam ($106) 

 
8.740 

 
6.576 

 
6.403 

 
6.030 

 
 

8. CONCLUDING REMARKS 
 

In this paper the shape optimization of an arch dam is performed. The cost of the arch dam 
includes the concrete volume and the casting areas considered as the objective function, with 
frequency, geometrical and stability constraints. To optimize the arch dam two meta-heuristic 
algorithms namely the CSS and PSO are utilized. To validate the finite element model, the 
Morrow Point arch dam is analyzed. It is observed that natural frequencies of some mode are 
eliminated due to considering only half of the dam in the results reported in the literature.  

Form the results of this study it can be seen that both CSS and PSO have performed better 
than the other methods available in the literature for the examples considered. The solved 
example demonstrates that the CSS leads to better results than the PSO. 
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